Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3430U20-1

WEDNESDAY, 12 JUNE 2019 – MORNING

SCIENCE (Double Award)

Unit 2: CHEMISTRY 1 FOUNDATION TIER

1 hour 15 minutes

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	5		
2.	8		
3.	6		
4.	7		
5.	6		
6.	6		
7.	7		
8.	8		
9.	7		
Total	60		

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

Answei an questions.

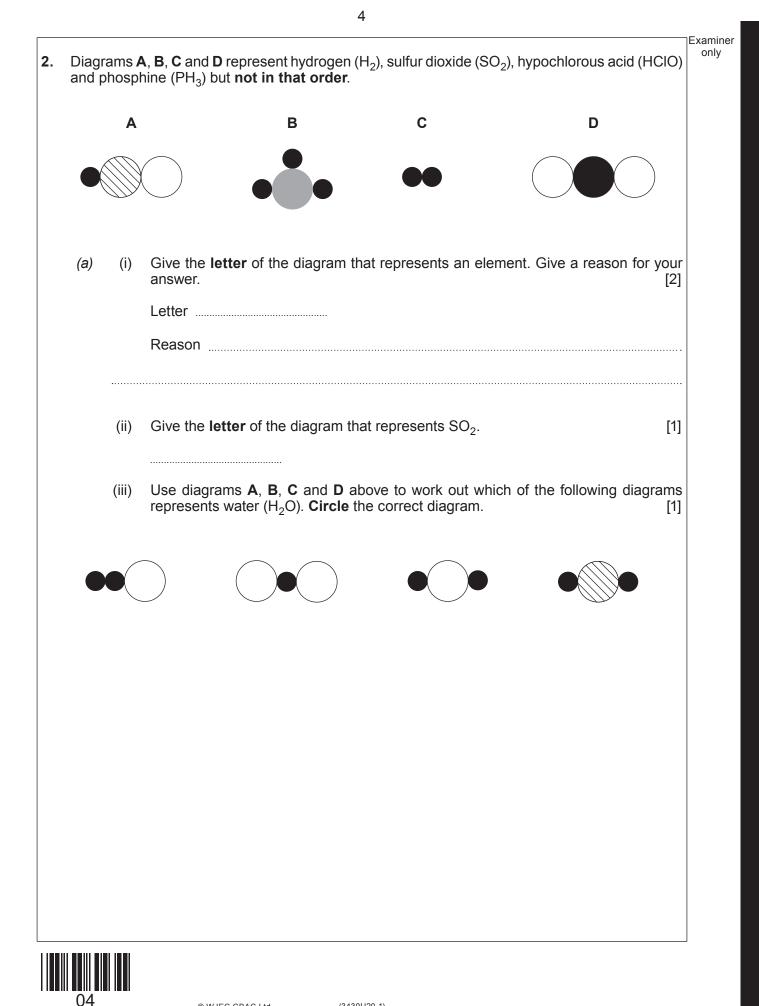
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

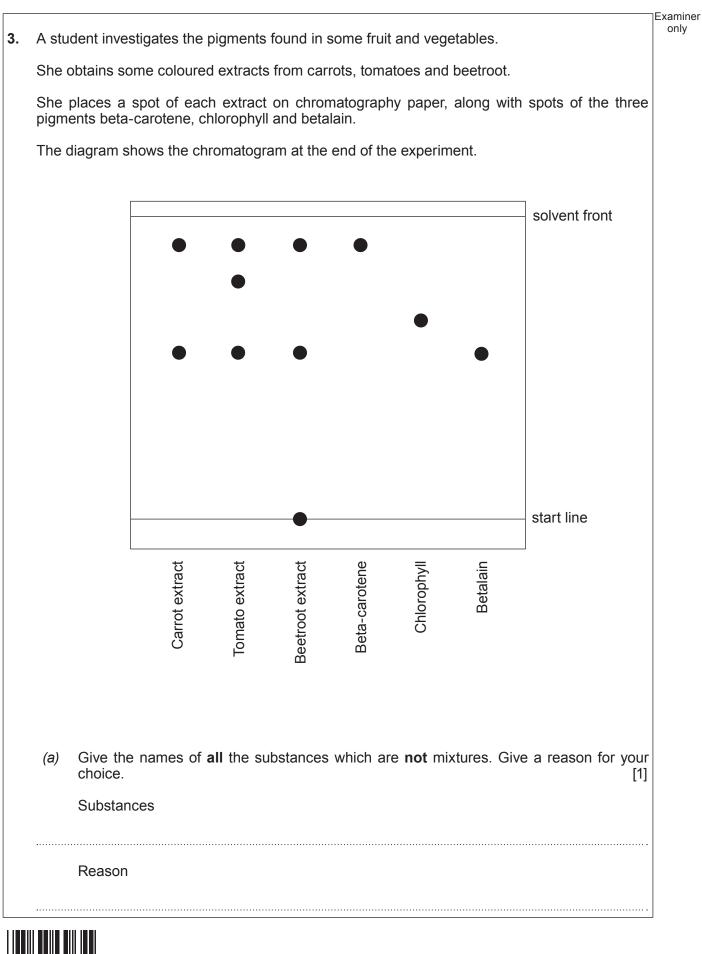
The number of marks is given in brackets at the end of each question or part-question.

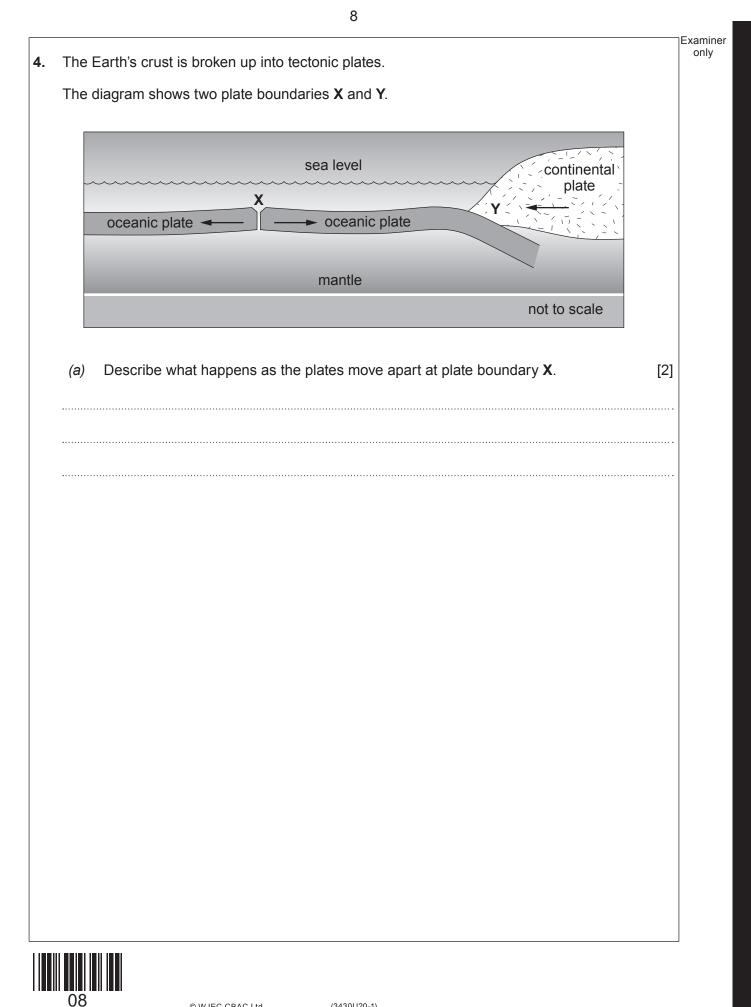
Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.




BLANK PAGE


	3	Examiner
	Answer all questions.	only
1.	Elements A, B, C, D and E are shown in the Periodic Table.	
	These letters are not the chemical symbols for the elements.	
	Α	
	C D	
	E	
	Give the letter of the element which fits each description below.	5]
	Letter is in Group 2	
	makes a 'pop' noise with a lit splint	3430U201
	has both metal and non-metal properties	343 343
	reacts with lithium to make lithium chloride	
	is unreactive	
		5



06

(b)	Put a tick (\checkmark) in the boxes next to the two conclusions that can be drawn from the chromatogram.	Examiner only 1e 2]
	chlorophyll is not present in carrot, tomato or beetroot extracts	
	beta-carotene is present in carrot extract but not present in tomato extract	
	both beta-carotene and betalain are present in beetroot extract	
	betalain is present in tomato extract but not present in carrot extract	
	both carrot and beetroot extracts contain a pigment other than beta-carotene, chlorophyll and betalain	
(C)	One of the pigments present in the carrot extract has travelled 4.4 cm above the start lin	e.
	The solvent front has travelled 8.0 cm. Calculate the $R_{\rm f}$ value of the pigment using the following equation.	1e 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20
	$R_{\rm f}$ = $\frac{\text{distance travelled by pigment}}{\text{distance travelled by solvent front}}$	
(d)	$R_{\rm f}$ =	
(4)		1]
·····		
		6

3430U201 09

		Type of p	late Dens	ity (g/cm ³)		
		continer	ntal	4.7		
		ocean	ic	5.0		
A	t boundar.	v Y the oceanic p	late is pushed unde	rneath the con	tinental plate.	
			plate is pushed und		-	[1]
(1	ii) State plate		the oceanic plate v	vhen it goes ur	derneath the con	tinental [1]
(i	ii) <u>Unde</u>	rline the name of	the type of plate bo	undary seen at	Y .	[1]
	de	structive	constructive	conserv	ative	
			ntists discovered that the mean rate of move			537 cm [2]
			rate = $\frac{\text{distance}}{\text{time}}$			
			F	Rate =	CI	m/year

Examiner

	Planet J is similar in size to the Earth. However, the temperature on planet J is about 470 $^{\circ}$ C and the clouds in its atmosphere are made of sulfuric acid.	only
		1

A group of students investigated the properties of some metals. Their aim was to see if they could find a metal suitable for designing a spacecraft to explore planet J. Their findings are shown below.

Zinc – fizzes quite vigorously with sulfuric acid, has a melting point of 420 °C and a density of 7.1 g/cm³

Sodium – has a density of 1.0 g/cm³, reacts explosively with sulfuric acid and has a melting point of 98 °C

Titanium – does not react with

sulfuric acid, has a melting point of

1675 °C and a density of 4.5 g/cm³

Copper – has a melting point of 1083 $^\circ\text{C}$, does not react with sulfuric acid and has a density of $8.9\,\text{g/cm}^3$

Magnesium – has a density of 1.7 g/cm^3 , a melting point of 650 °C and it fizzes vigorously with sulfuric acid

Lead – has a melting point of 328 °C, a density of 11.3 g/cm³ and does not react with sulfuric acid

The spacecraft needs to withstand the conditions on the surface of planet J. The mass of the spacecraft also needs to be as low as possible in order for it to have enough energy to escape the Earth's gravity.

(a) Which one of these statements best describes why magnesium is an unsuitable metal for the spacecraft? Put a tick (✓) in the box next to the correct answer. [1]

its density is 1.7 g/cm^3

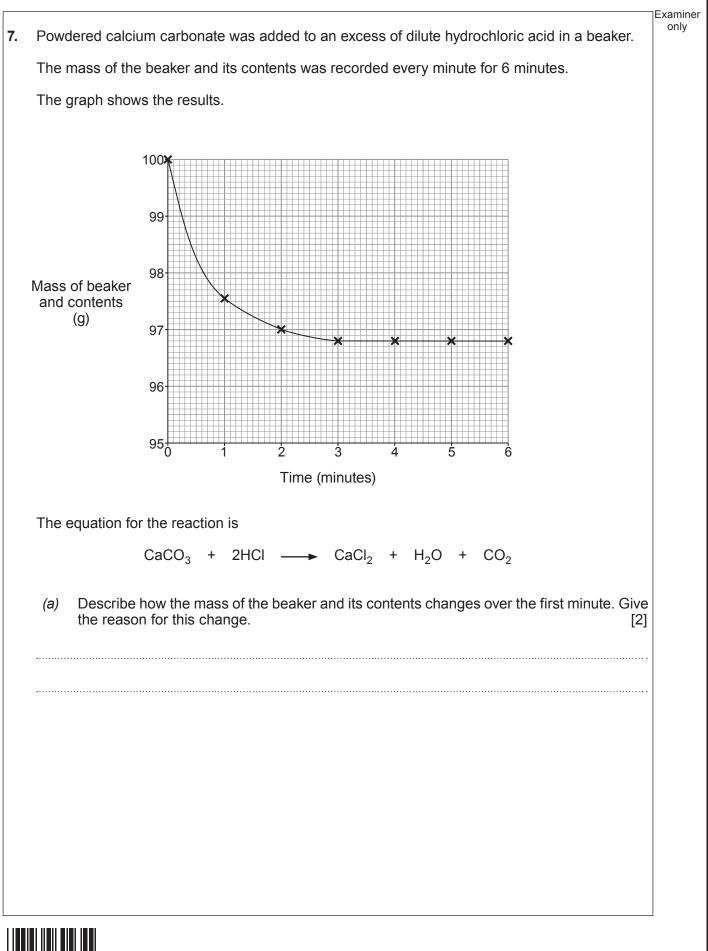
its melting point is 650 °C

it fizzes vigorously with sulfuric acid

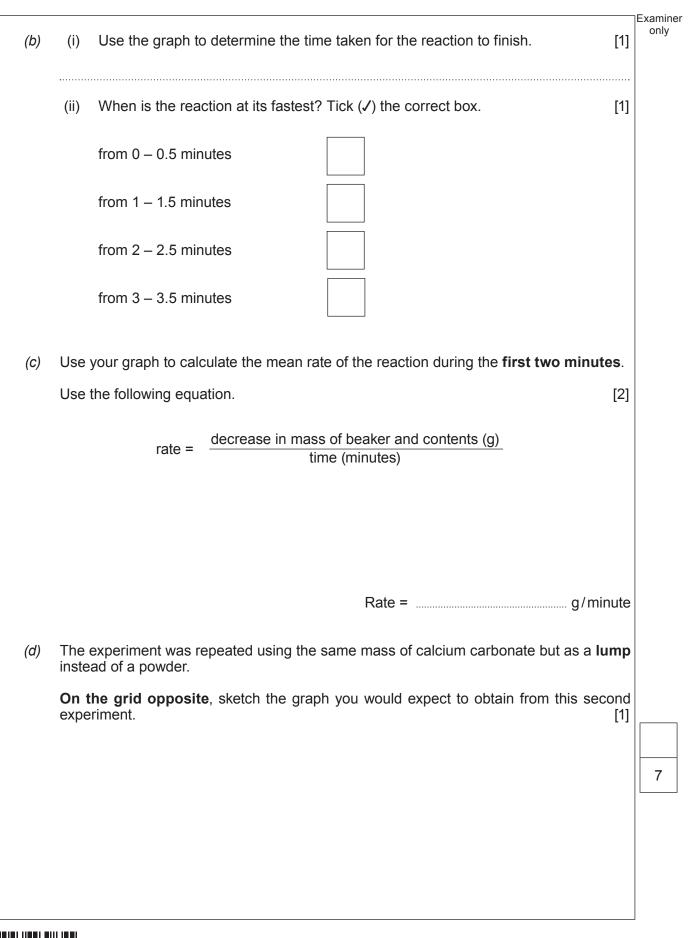
it is malleable

Examiner only

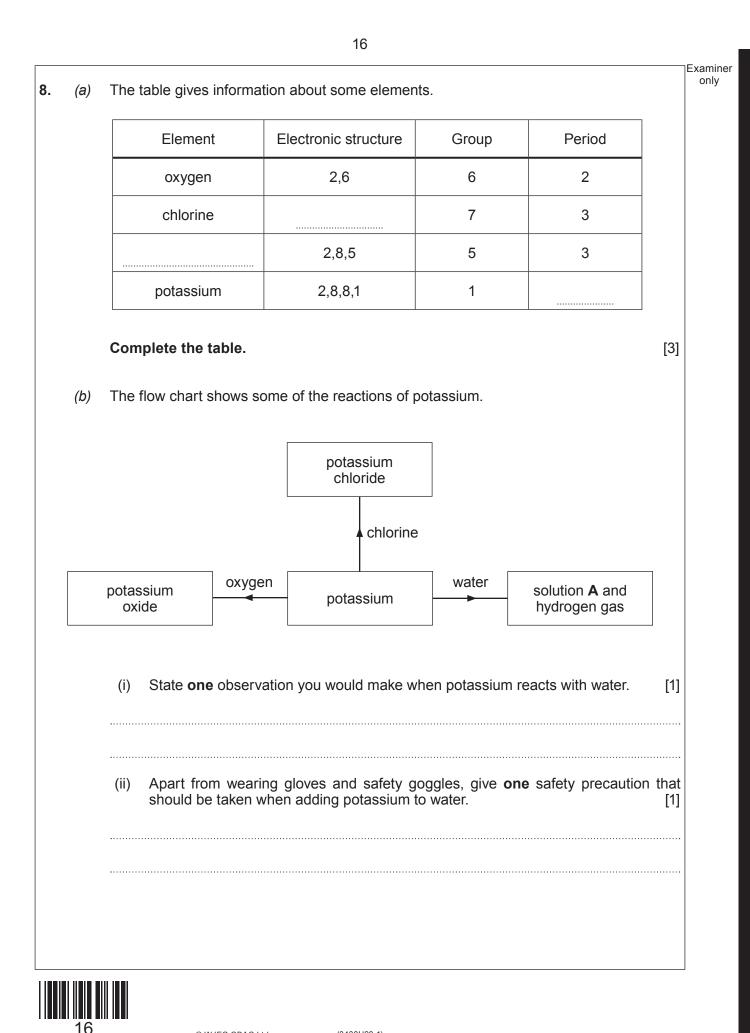
3430U201 11


	(b)	Small amounts of lead are sometimes used in electrical circuits.	
		Which one of these statements best describes why lead would not be su in the electrical circuits of the spacecraft? Put a tick (\checkmark) in the box next answer.	
		it does not react with sulfuric acid	
		it is ductile	
		it would melt when it lands on planet J	
		its density is 11.3g/cm ³	
	(C)	The students decided that titanium is the most suitable metal from whic spacecraft.	h to build the
		Put a tick (\checkmark) in the boxes next to the two statements that best describe th their choice.	ne reasons for [2]
		it does not react with sulfuric acid	
		it is expensive	
		it is a good conductor of heat	
		it is non-magnetic	
		it has a melting point much higher than the temperature on planet ${f J}$	
		it is shiny so will reflect the sun's rays	
	(d)	Sodium reacts explosively with sulfuric acid. Sodium sulfate and hydrogen Complete and balance the equation for this reaction.	are produced. [2]
		Na + $H_2SO_4 \longrightarrow H_2$	
_	11	© WJEC CBAC Ltd. (3430U20-1)	Turn over.

6


5.	Several areas of the UK add fluoride to drinking water.	Exami only
	State the benefit of fluoridation and discuss the reasons why some people are opposed to it. [6 QER]	
		6

BLANK PAGE



14

8

(iii)	Give the formula of solution A .	[1]	Examiner only
(iv)	Suggest a value for the pH of solution A .	[1]	
(V)	Name a Group 1 metal that is more reactive than potassium.	[1]	

		IE	Examine
9.	(a)	The Earth's early atmosphere around 4000 million years ago contained mainly carbon dioxide and water vapour produced by volcanoes.	only
		 Explain why the large percentage of water vapour in the Earth's atmosphere decreased over geological time. 	
		 (ii) Give two reasons why the percentage of carbon dioxide in the Earth's atmosphere has decreased over geological time. 	
	(b)	During the last 250 years the percentage of carbon dioxide in the Earth's atmosphere has increased from 0.03% to 0.04%. This has led to increased global warming. Give one reason for this increase and explain why global warming is a cause for concern. [2]	
	(c)	Ammonia present in the Earth's early atmosphere reacted with oxygen to produce nitrogen and water vapour. Complete the balancing of the symbol equation for this reaction. [1]	
		$NH_3 + 3O_2 \longrightarrow N_2 + 6H_2O$ END OF PAPER	7
	18	© WJEC CBAC Ltd. (3430U20-1)	

Question Additional page, if required. number Write the question number(s) in the left-hand	margin. Examine

BLANK PAGE

BLANK PAGE

BLANK PAGE

POSITIVE IONS		NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH4 ⁺	carbonate	CO3 ²⁻	
barium	Ba ²⁺	chloride	CI	
calcium	Ca ²⁺	fluoride	F⁻	
copper(II)	Cu ²⁺	hydroxide	OH-	
hydrogen	H⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
iron(III)	Fe ³⁺	oxide	NO ₃ ⁻ O ²⁻	
lithium	Li ⁺	sulfate	SO4 ²⁻	
magnesium	Mg ²⁺		-	
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag ⁺			
sodium	Na ⁺			
zinc	Zn ²⁺			

2	Λ
4	4

	0	L O E	o e u c	on non	Son	12 D 101 4	n Son			
	0	⁵ H ⁴		40 Ar Argon						
	2		19 Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85			
	9		16 O Sygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84			
	Ŋ		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82			
	ო		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81			
щ					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80			
IABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79			
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
RIO	roup				59 Co Cobalt 27	103 Rhodium 45	192 Ir 177			
HE PERIODIC TABLE		eu]			101 Ruthenium 44		Key		
	9 D	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75			
					52 Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74			
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73			
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72			
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89		
	0		9 Be Beryllium	24 Mg 12 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88		
			7 Li Lithium 3	23 Na Sodium		86 Rb Rubidium 37	133 CS Caesium 55	223 Fr Francium 87		

 relative atomic mass atomic number Ar Symbol Name Z

